skip to main content
資源種類 顯示結果: 顯示結果: 查詢種類 索引

以二氧化碳進行合成氣製造及直接合成二甲醚之反應特性

林柏志; Lin, Bo-jhih 陳維新; Wei-hsin Chen; 綠色能源科技研究所碩士班 2012

線上取得

  • 題名:
    以二氧化碳進行合成氣製造及直接合成二甲醚之反應特性
  • 著者: 林柏志; Lin, Bo-jhih
  • 陳維新; Wei-hsin Chen; 綠色能源科技研究所碩士班
  • 主題: 合成氣製造; 活性碳; 直接合成二甲醚; 雙功能性觸媒; 二氧化碳再利用; Syngas production; activated carbon; direct dimethyl ether synthesis; bifunctional catalyst; carbon dioxide reuse
  • 描述: 本研究主要分為兩個部份進行,第一部分為以二氧化碳、水及活性碳為原料進行交互反應,主要結合碳液損反應(solution loss reaction)及蒸汽氣化反應(steam gasification reaction)用以進行合成氣製造,以此方式進行合成氣製造反應,除了有低進料成本(如活性碳與水)、反應過程中無化石燃料及觸媒之使用外,在合成氣製造的同時,也可達到二氧化碳再利用之效益;由於產出之合成氣仍參雜有部分之二氧化碳,因此第二部分之研究主要探討高空間速度(space velocity)下,二氧化碳對於二甲醚合成之影響,主要乃係利用一步合成法進行二甲醚合成反應。相較於二步合成法,一步合成法通常使用混合性觸媒(hybrid catalyst)或雙功能性觸媒(bifunctional catalyst)直接將合成氣轉化為二甲醚,雙功能性觸媒包含有甲醇合成(methanol synthesis)及甲醇脫水(methanol dehydration)等反應功能,反應機制主要為在合成氣合成甲醇的同時,並脫水產生二甲醚。本研究以共沉澱法(coprecipitation method)製備甲醇合成觸媒,再與甲醇脫水觸媒以物理混合的方式得到雙功能性觸媒;利用共沉澱法製備甲醇合成觸媒,由於該方法製備出來之觸媒除了具有顆粒可緊密接觸之優點外,同時可以有更強之協和效應(synergistic effect),因此可增加反應過程中的轉化率。在合成氣製造之研究結果發現,在適當的操作條件下,進氣之二氧化碳轉化率可高於35%,氫氣產率可達接近50%;藉由比表面積分析的結果可以發現,反應前之活性碳比表面積833 m2 g-1,反應後之活性碳比表面積可增加至1100-1450 m2 g-1,特別是水參與其交互作用後,反應後之比表面積有明顯增加之趨勢,此即表示水的添加可增進反應中交互作用的進行。在二甲醚合成之研究結果中,主要先將觸媒進行耐久性測試,測試時間為90小時,結果發現觸媒藉由耐久性測試後,一氧化碳之轉化率仍保有48%之效能,反應後之觸媒並利用熱重分析儀串連傅立葉轉換紅外線光譜儀,針對觸媒碳沉積(coke deposition)現象進行分析。在反應系統壓力為40大氣壓,操作溫度為225°C時,反應中之一氧化碳與氫氣轉化率分別可達57及33%,每克之反應觸媒在每小時的二甲醚產量可達1.89克。
    This study comprises two important part, the purpose of the first part is to produce syngas from the interaction of carbon dioxide, steam and activated carbon. Two reactions occur in the interaction, with one the solution loss reaction and the other the steam gasification reaction. In this method of syngas production, the cost of feedstocks such as activated carbon and steam is low, and no fossil fuels and catalyst are consumed in the reaction. Moreover, carbon dioxide can be reused. Because carbon dioxide exists in the product gas, the second part discusses the effect of carbon dioxide on dimethyl ether (DME) synthesis under the conditions of high space velocity. One-step method is developed to synthesize DME. Compared to the two-step method, a hybrid catalyst or bifunctional catalyst is prepared for the one-step method. Two types of active site are simultaneously contained in the bifunctional catalyst; one is for methanol synthesis and the other for methanol dehydration. The catalyst is prepared by the coprecipitation method. The results in the first part show that CO2 conversion can be over 35% and the H2 yield can be as high as 70% of theoretical result. From the BET analysis, it is found that the surface area of raw activated carbon is 833 m2 g-1 and it is increased to 1100-1450 m2 g-1 after undergoing the reaction. When steam is added into the reaction, the BET surface increases obviously. It is thus recognized that the participation of steam is conducive to the interaction of carbon dioxide, steam and activated carbon. In the second part, the performance of the bifunctional catalyst is first investigated by test for 90 hours and coke deposition is observed. The results reveal that CO conversion is around 48% after the reaction and coking behavior is observed in the analysis of TG-IR. The CO conversion and H2 conversion can reach up to 57% and 33%, respectively, at 225°C and 40atm, and the DME yield is 1.89 g (gcath)-1.
    碩士
  • 建立日期: 2012
  • 格式: 121 bytes
    text/html
  • 語言: 中文
  • 識別號: http://nutnr.lib.nutn.edu.tw/handle/987654321/1169
  • 資源來源: NUTN IR

正在檢索遠程資料庫,請稍等